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FOREWORD
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SECTION 1
INTRODUCTION

The first generation aluminum-lithium products, in the early 1980’s, possessed
slightly lower strength and inferior ductility and toughness when compared to then
contemporary and cleaner conventional 2000 and 7000 aluminum alloy wrought products
[1-3]. In the mid-1980’s, these shortcomings were considerably improved upon; the most
significant step was the adoption of the T851 heat treatment [1,4,5], where following
solution heat treatment, a sheet or plate was stretched by 2 to 4 percent, followed by

artificially aging to peak strength.

In addition to the improvement in density and modulus, Al-Li alloys show greater
resistance to fatigue crack propagation than conventional high strength aluminum alloys.
This behavior was primarily attributable to its unique layered microstructure which
produces crack closure, where the crack remains closed and stationary for a portion of a
fatigue load cycle [7,8]. Crack closure in the Al-Li alloy materials has been attributed to
its anisotropic microstructure causing crack tip shielding via roughness of the crack
surfaces [3,9-17]. Of the various Al-Li products, the effect has been more noticeable in
thick section wrought products, like the test material, where large unrecrystallized grains
possess a more anisotropic microstructure and stronger texture which result in greater
fracture surface roughness induced fatigue crack closure [1,18-20]. The closure results in
a reduced effective crack driving parameter, a slower fatigue crack propagation and more
damage tolerance when compared to conventional aluminum products or Al-Li products

[19-23] with a recrystallized grain structure.

A further increase in fatigue crack growth resistance has also been shown to occur
in Al-Li alloys possessing a high Li/Cu ratio, as the test material. A high Li/Cu ratio
increases fatigue crack resistance, because: (1) the coarseness of the crack surface
increases with the Li/Cu ratio [24], (2) a low Cu content reduces the formation of

embrittling secondary phase particles [1], and (3) in a moist environment greater oxide




debris bridging of the crack occurs, since Li promotes while Cu inhibits oxide debris

formation and the resulting crack closure [1,14,24-28].




SECTION 2
TEST MATERIAL

The test material, produced by ALCAN, was a 1.750-inch thick Al-Li alloy 8090
plate. The alloy was thermomechanically processed to the T8771, peak aged condition.

The chemical composition, in weight percent, is shown below in Table 1. The Li/Cu

ratio equals 2.0 in this Al-Li alloy.

TABLE 1
CHEMICAL COMPOSITION OF Al 8090-T8771 IN WEIGHT PERCENT

Li Cu Mg Zr Fe Si Al

2.23 1.12 0.72 0.115 0.103 0.059 _Balance

The average of three room temperature tensile tests are listed in Table 2 [28]. The

ultimate and yield strengths were comparable to other high strength aluminum alloys. As

TABLE 2
ROOM TEMPERATURE Al 8090-T8771 AVERAGE TENSILE PROPERTIES
Elongation

0.2% Yield Strength Ultimate Strength in 1 inch

MPa (ksi) MPa (ksi) G.L. (%) Orientation
469.8 (68.1) 536.9 (77.9) 7.07 longitudinal
419.6 (60.9) 520.8 (75.5) 9.16 transverse II
386.5 (56.1) 4994 (72.4) 10.04 45° off long. !
4229 (61.3) 520.2 (75.4) 3.51 short-trans.*

*short-transverse oriented specimens had a 0.50-inch gage length.

found with other Al-Li alloys, the lowest yield strength occurred for those specimens
removed from the rolling plane, with their central axis 45 degrees off the rolling direction

[11]. The ductility, as indicated by the permanent elongation, was acceptable for




specimens removed from the plate’s rolling plane. However, the through-the-thickness
average percent elongation was low [11,26]. The lack of ductility was attributable to
nonuniform, through-the-thickness, distribution of the T8 cold work dislocations [4].
Dislocations serve as nucleation sites for a finely dispersed precipitate. The absence of a
dense dislocation populace at the mid-plane resulted in fewer and larger precipitates
migrating to the grain boundaries. Both weakened the grain boundaries and resulted in

low ductility, toughness, and reduced strength through the thickness.

Fracture toughness data for the test plate are listed in Table 3 [28]. For the (L-T)
and (T-L) specimen orientations the material’s fracture toughness was satisfactory. The
toughness was cut in half when the material was loaded through-the-thickness for the

same reasons previously discussed.

TABLE 3
ROOM TEMPERATURE FRACTURE TOUGHNESS FOR Al 8090-T8771

Thickness K, Valid ASTM Validity Criteria
Orientation (in.) MPa(m)” KSI(in)*® K.? P /P | S .
L-T 1.500 27.16 (24.72) No 1.17
1.500 29.69 (27.02) Yes .
1.500 26.01 (23.67) No 1.21
T-L 1.500 2742 (24.95) Yes
1.500 26.72 (24.32) Yes
1.500 24.89 (22.65) Yes
S-L 0.660 13.34 (12.14) No 0.892
0.660 14.09 (12.82) No 0.842
0.660 10.82 (9.85) No 0.777




SECTION 3
RESULTS

Constant amplitude loading fatigue crack growth rate (FCGR) data were
generated in laboratory air and saturated air environments using predominately a loading
frequency of 30 Hz and three R-ratios: 0.1, 0.33, and 0.7. A few of the initial laboratory
air tests were run at 25 Hz. The test specimens were ASTM E647 standard compact
tension specimens with (L-T) orientation. For the low humidity and R-ratio equalling 0.1
and 0.33, the laboratory’s relative humidity fluctuated from 10 to 30 percent over the
testing period. For R=0.7 low humidity tests, desiccant was added to an environmental
test chamber to maintain the humidity below 5%. During the high humidity tests a
saturated air condition was maintained. High and low humidity FCGR data results are
plotted in Figures 1 through 3, for the three load-ratios. For R-ratios of 0.1 and 0.33, the
results showed unusually wide scatter bands for data generated using a computer
automated test control and data acquisition system. As expected, the material exhibited
considerable crack closure, (R=0.1 and 0.33) attributed to the unusually coarse fracture
surfaces produced by a mostly unrecrystallized grain structure. As seen in other Al-Li
alloys there was a strong closure effect for low loading conditions and with shorter crack
lengths. The FCGR closure data for this same test plate was covered in more detail in
Reference 28. The effective stress intensity range, AK_,, approximately equalled half the
remotely applied stress intensity range, AK, in the near threshold region as shown in
Figure 4 [28]. The closure effect diminished with increased stress intensity range [22-23,
25]. Crack velocity was greater in the high humidity environment, except in the near

threshold region, for an R-ratio of 0.1 and 0.33, where closure effects were dominant.

For a load-ratio of 0.7, no closure effects and considerable reduction in the data
scatter band width were observed. For this R-ratio, crack face surface roughness

produced in the two environments were approximately equal.

The low humidity air data-set, for R=0.1, showed a plateau of nearly constant or

gradually increasing crack velocity. The slope of the FCGR linear mid-region for most
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high strength aluminum alloys has been shown to be in the range of 3.0 t0 4.0. If a line
was fitted to the test data mid-range (Figure 1), the slope would approximately equal 1.0.
The plateau has been previously observed for Al-Li alloys thermomechanically processed
to the T8 condition [14, 18, 26] and tested in a laboratory air environment. There, the
plateau was attributed to surface roughness induced closure caused by the unusually
coarse fracture surface found in Al-Li thick section products with a T8 thermomechanical
processing. Closure and the plateau were reduced when the R-ratio was increased to

equal 0.33 and disappears when the R-ratio equalled 0.7.

For load-ratios of 0.1 and 0.33, the fracture surfaces generated in the saturated air
environment appear smoother than those for the data generated in low relative humidity
air. Reference literature for Al-Li thick plate tested in a NaCl solution and for growth
rates above the threshold region, has shown environmental corrosion [14] or the
combination of corrosion and fretting debris [29] to be responsible for smoothing the
crack faces and resulting in reduced crack closure relative to that seen in dry air. The
same effect was seen here; the saturated air environment produced a smoother fracture
face when crack velocity exceeded 107 inch per cycle. For an R-ratio of 0.1, in the near
threshold region, the high humidity data crossed the low humidity plateau and presented a
higher threshold stress intensity range. For R=0.33 the two data sets were collocated in
the near threshold region. Previous published work [13,24] for Al-Li thick plate data
generated in a 3.5 weight percent NaCl solution has showed this same crossing of the
data-set generated in a laboratory air environment. There, the phenomenon was attributed
to additional corrosion debris, generated by the NaCl solution, bridging the crack at low
load and crack-opening-displacement conditions and producing added closure. A reduced
FCGR was the result. The same effect was likely seen here; when the relative humidity
was raised to saturation, oxidation debris and associated closure increased, resulting in a

reduced FCGR and a larger threshold stress intensity range.

After observing this unusual crossing of the low and high humidity data-sets
(R=0.1) in the near threshold region, duplicate FCGR tests were undertaken with the

frequency decreased to 1 Hz to confirm the findings. It was anticipated that the lower

10




frequency would accentuate the crossover phenomena observed at 30 Hz. As with the
data generated at R=0.7, desiccant was added to keep the humidity in the environmental
chamber below 5% for the dry air tests. These test results are presented in Figure 5. As
with the previously presented data there were unusually wide data scatter bands. Here, as
at the higher frequency, the saturated air data crossed the plateau in the dry air data-set in

the near threshold region, thus rendering a larger FCGR threshold stress intensity range.

11
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SECTION 4
CONCLUSIONS

The test material showed a great deal of fatigue crack closure. Closure

diminished with increased crack length and R-ratio.

Above the threshold region the high humidity environment increased crack

growth rate.

For the laboratory air environment and R=0.1, there was a plateau of nearly
constant crack velocity in the FCGR data mid-range, attributable to surface

roughness induced crack closure; the plateau diminished with increased R-ratio.

In the near threshold region where R=0.1, material tested in high humidity
produced a higher threshold stress intensity range compared to laboratory air.
This can be attributed to environmental generated debris on the crack faces

bridging the crack at low loading and crack-opening-displacement conditions.

At higher R-ratios the effects of closure were reduced; however, the material

tested in high humidity continued to have the higher growth rates.

Specimens tested at 1 Hz and R=0.1 showed similar fatigue crack growth

behavior to specimens tested at 30 Hz.
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